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ABSTRACT 
 
Model continuity refers to the ability to use the same model of a 
system throughout its design phases. For intelligent systems, we 
can restrict such continuity to the intelligent control 
components, and more specifically, the models that implement 
the system’s  decision making. behavior.  In this paper, we 
show how a modeling and simulation environment, based on the 
DEVS formalism,, can support model continuity in the design 
of intelligent systems. For robotic systems, such continuity 
allows design and testing of the same control logic model 
through the phases including logical simulation, real-time 
simulation and actual execution. 
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1. INTRODUCTION 
One criterion for intelligence is the ability to make 
decisions in a timely manner. Certainly for systems 
expected to interact with the real world, such as robotic 
systems, real time constraints play a major role, although 
they may vary in stringency for different behaviors. With 
the rapid advance in processor speed, memory capacity, 
sensors and actuators, and dramatic increases in network 
technology, intelligence has a natural association with 
distributed systems, as exemplified by multi-agent 
systems. Unfortunately, the lack of good design methods 
and support tools has made software development for 
intelligent systems a bottleneck. To address the 
importance and complexity of real time software 
development, academic and commercial tool developers 
have proposed various real time software models and 
methods that represent different emphases on this 
problem. However, so far none of them fits very well to 
support real time software from a systematic way. A 
formal methodology is needed for real-time software  

 
 
 
 
development [1, 2]. The method should support software 
development for intelligent systems including designing, 
testing and execution in a systematic way, with a 
framework to integrate a system’s behavior, structure and 
timeliness together. 

In this paper, we describe an approach to develop 
real time software for intelligent systems. This approach 
is based on DEVS modeling and simulation framework 
[3]. Corresponding to the general “Design—Test—
Execute” development procedure, our approach provides 
a “Modeling—Simulation—Execution” methodology 
which includes several stages to develop real time 
software. In the modeling stage, Atomic and Coupled 
models are built to capture a system’s behavioral and 
structural properties. In the simulation stage, a series of 
simulators is chosen to simulate and test model’s 
behavior in an incremental fashion step. In the execution 
stage, the verified model is executed by real-time 
execution engine. It is important to point out that during 
the whole process, we maintain model continuity because 
the same model that has been designed will be simulated 
and then executed. For distributed systems, this 
continuity also means the coupling among the models is 
maintained even though the models are executed in a 
distributed environment.  We believe keeping model’s 
continuity is an efficient way to manage software’s 
complexity and consistency. With model’s continuity, we 
are confident that the system in operation is the system 
we wanted to design and will carry out the functions as  
tested by simulation. 

This paper will start with the description of the 
methodology for a stand-alone real time system. Then it 
will scale up to distributed real time systems. For both 
systems, step-wise simulation methods are provided to 
simulate and exercise the model under test. Finally, we 
describe how experimental frame, a more general testing 
environment, can be integrated to test the model of 
interest while still preserving model continuity. 



2. MODELING, SIMULATION AND 
MODEL CONTINUITY  

Intelligent real time systems monitor, respond to, or 
control, an external environment. This environment is 
connected to the digital logic through sensors, actuators, 
and other input-output interfaces [4].  A real time system 
from this point of view consists of sensors, actuators and 
the real time control and information-processing unit. For 
simplicity, we will call this last one the  control model. 
The sensors get inputs from the real environment and 
feed them to the control model. The actuators get 
commands from the control model and perform 
corresponding actions to affect the real environment. The 
control unit processes the input from sensors and makes 
decisions based on its control logic. Depending on the 
complexity of the system, the control model could have 
only one central component or it could have multiple 
parallel-processing subcomponents, which in turn may 
have their own sub-control units. 
 
Once we establish this view of a real time system as 
shown on the left side of Figure 1, we can model it easily. 
In our approach, sensors and actuators are modeled as 
DEVS Activities, which is a concept introduced by RT-
DEVS for real time system specification [5]. A DEVS 
Activity can be any kind of computer task. However, in 
the context of this paper, we only consider the 
sensor/actuator Activities. The control unit is modeled as 
a control model which might has a set of subcomponents. 
These subcomponents are coupled together so they can 
communicate and cooperate. With this approach, the 
control model acts as the brain to process data and make 
decisions. It could be a simple Atomic model or a 
complex hierarchical coupled model. Sensor/actuator 
Activities act as hardware interfaces providing a set of 
APIs for the control model to use. They are essentially 
hardware drivers for sensors and actuators. How to define 
an Activity and its APIs is dependent on how the designer 
delineates the “Control Model—Activity” boundary. For 
example, we can model a sensor module that may have 
its own control logic as a sensor Activity. Or we can also 
include that part of logic into our control model and only 
model the sensor hardware as an Activity. The clear 
separation between control model and activity’s functions 
makes it possible for the designer to focus on his design 
interest. In the context of intelligent real time systems, 
the control logic is typically very complex, as the system 
usually operates in a dynamic, uncertain or even hostile 
environment. As such, the control model is the main 
interest of design and testing. In our approach, simulation 
methods are applied to test the correctness and efficiency 
of this model. Tne continuity of this model is also 
emphasized during the whole process of the 
methodology. 

 
 

 
Before simulating the control model, we need to 

model the real environment as an environment model. 
This environment model is a reflection of how the real 
environment affects or is affected by the system under 
design. Meanwhile, a “simulated” sensor/actuator 
hardware interface is also needed for the control model to 
talk to the environment model. This is why we introduce 
the SimActivity concept. In contrast to an Activity, which 
drives real hardware and is actually being executed, a 
SimActivity imitates an Activity’s interface/behavior and  
 

 

 
Figure 1: Modeling, Simulation and Execution 
of Non-distributed Real Time System 
 

is only used during simulation. A sensor SimActivity gets 
input from the environment model just as a sensor 
Activity gets input from the real environment. An 
actuator SimActivity does  similar things as an actuator 
Activity too. Note that it is important for an Activity and 
its SimActivity to have the same interfaces, which are 
used by the control model in both simulation and real 
execution. By imposing this restriction, the control model 
can be kept  unchanged in the transition from simulation 
to execution (it interacts with the environment model and 
real environment using the same interfaces). Thus, model 
continuity is achieved. 
 

As shown in the center of Figure 1, in the modeling 
stage, a simulated system is developed based on the real 
system. With this system, different simulation strategies 
can be applied to validate the control model. In DEVS, 
there is a clear separation between a model and its 
simulators, which gives us the flexibility to choose 
different simulators to simulate the same model. These 
simulators include fast-mode simulator, real-time 
simulator and distributed simulators. With these 
simulators, a model can be simulated and tested 
incrementally before its real execution. During the 
simulation stage, employing fast-mode (or logical time) 
simulators, if we find the simulated result is not what we 
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expected, the model can be revised and then re-simulated. 
This “modeling-simulation-revising” cycle repeates until 
we are satisfied with simulation result or nothing more 
can be learned in the simulation stage. A more detailed 
description of how to choose and use different simulators 
is given in the next section. 

After the model is validated through simulations, it 
will be mapped to the real hardware for execution. For a 
non-distributed application, this mapping is the “Activity 
Mapping” to associate the sensor/actuator Activities to 
the corresponding sensor/actuators hardware. For a 
distributed application, an extra “Model Mapping” is 
needed to map a set of cooperative models to a set of 
networked nodes. By associating the models and 
Activities to their corresponding hardware, the system 
can be executed in a real environment. In execution, the 
control logic is governed by the control model, which has 
been validated in the step-wise simulation. If true model 
continuity from simulation to execution has been 
achieved, this control model will carry out the control 
logic just the same as it did when simulated. In practice, 
one may not be able to completely replicate the real 
environment in the environment model, and there will be 
potential for design problems to surface in real execution. 
When this happens, re-iteration through the stages can be 
more easily achieved with the model continuity approach. 
 

3. STEP-WISE SIMULATION AND 
TESTING 

Simulation technology has been widely applied to help to 
design and test real time systems. This technology 
provides a valuable tool for engineers to test and 
understand the system under design. When the 
complexity of a problem is too large to allow an 
analytical solution, simulation is the only option to  
investigate system configurations or operational modes 
prior to the implementation in the field. In this section, 
we will show how different simulation methods can be 
applied to incrementally simulate and test a stand-alone 
system. Simulations for distributed systems will be 
shown in section 5. 

As shown in step 1 of Figure 2, for a stand-alone 
system, three different simulation steps can be applied to 
test the model. They are fast-mode simulation, real-time 
simulation and hardware-in-the-loop simulation. These 
simulation methods apply different simulation 
configurations to test different aspects of the model under 
test. 

 
 
 
 
 

 

 
 
 
Figure 2: Step-wise Simulations of Non- 
distributed Real Time System 
 
In fast-mode simulation, the control model is 

configured to talk to the environment model through 
sensor/actuator SimActivities. These models stay in one 
computer and a DEVS fast-mode simulator is chosen to 
simulate them.  In fast-mode simulation, the flow of time 
is logical (not connected to a wall-clock).  So, a fast-
mode simulator generates simulation results as fast as it 
can. Based on these results, we can analyze the data to 
see if the system under test fulfills the logical behavior as  
desired. 

 
Just as fast-mode simulation verifies a model’s 

logical behavior, real-time simulation verifies model’s 
temporal behavior. In real time simulation, the model’s 
setting is the same as in fast-mode simulation. However, 
the fast-mode simulator is replaced by a real-time 
simulator, which executes the model at the same speed as 
a real world clock. Since the simulation runs in real time, 
we can test a model’s temporal behavior such as checking 
if  critical deadlines can be met.  

In fast-mode and real-time simulations, the model 
under test and the simulators reside in one computer. This 
computer is not the same computer as the one in which 
the model will actually be executed. Instead, a simulated 
environment is provided. However, not all components in 
a complex system can be modeled in adequate detail in 
computer simulation. Sometimes, the executing hardware 
can have significant impact on haw well a model’s 
functions can be carried out. For example, processor 
speed and memory capacity are two typical factors that 
can affect the performance of an execution. Thus, to 
make sure that the control model, having been validated 
in fast-mode and in real-time simulation, also can  
execute correctly in the real hardware, we adopt the 
hardware-in-the-loop (HIL) simulation [6,7]. As shown in 
step 3 of Figure 2, in HIL simulation, the environment 
model is simulated by a DEVS real time simulator on one 
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computer. The control model under test is executed by 
DEVS real-time execution engine on the real hardware. 
This DEVS real-time execution engine is a stripped-down 
version of DEVS real-time simulator. It provides a 
compact and high-performance runtime environment to 
execute DEVS models. In HIL simulation, the model 
under test interacts with the environment model through 
SimActivities. These SimActivities act as simulated 
sensors or actuators. Real sensors or actuators can also be 
included into HIL simulation by using sensor/actuator 
Activities. The decision of which sensor/actuator will be 
real hardware and which sensor/actuator will be 
simulated SimActivities is dependent on the test 
engineer’s testing objectives. With different testing 
objectives, different combinations of real sensor/actuators 
and simulated sensor/actuators can be chosen to conduct 
an exhaustive test of the control model. Notice that in 
HIL simulation, as the control model and environment 
model stay on different computers, a bi-directional 
connection must be established between the two 
computers. We use LAN connection based on TCP/IP 
protocol because it is widely used in industry, can sustain 
high-speed data transfer, and very portable. This 
connection is taken care of by DEVS real-time simulator 
and execution engine so it is transparent to the model. 

Once we passed hardware-in-the-loop simulation, we 
are ready to leave the simulation stage for execution 
stage. As shown in step 4 of Figure 2, in real execution, 
DEVS real-time execution engine executes the control 
model. There is no environment model because the 
control model will interact with the real environment 
through the sensor/actuator Activities. 

 

4. DISTRIBUTED REAL TIME SYSTEMS 
With the advance of network technology, distributed real 
time systems are playing more and more important roles. 
Figure 3 shows an example distributed system with three 
nodes. Generally speaking, a distributed real time system 
consists of a set of subsystems. Like a stand-along 
system, each subsystem has its own control and 
information processing unit and it interacts with the real 
environment through Sensor/Actuators. However, these 
subsystems are not “along”. They are physically 
connected by network and logically they talk to each 
other and cooperate to finish a common task. Distributed 
real time systems are much harder to designed and tested 
because one subsystem’s behaviors may affect one or all 
of other subsystems. These subsystems influence each 
other not only by explicit communications, but also by 
implicit environment change as they all share the same 
environment. For example, in Figure 3, if Node 1 changes 
the environment through its actuators, this change will be 
seen by the sensors of Node 2, thus affects Node 2’s 

decision making. With this kind of influence property, 
it’s not practical to design and test each subsystem 
separately and then put them together. Instead, the system 
as a whole needs to be designed and tested. 

 
Figure 3: Modeling, Simulation and Execution 
of Distributed Real Time System 

 
In our approach, a distributed real time system is 

modeled as a coupled model. This coupled model 
consists several subcomponents. Each subcomponent is 
corresponding to a subsystem of the distributed real time 
system. As described in section 2, these subsystems are 
also modeled as DEVS models, which consist of control 
model and sensor/actuator Activities. The control model 
of each subsystem interacts with the real world through 
sensor/actuator Activities. These subsystem models are 
coupled together (by connect one model’s output port to 
another model’s input port) so they can communicate. 
The coupling among the models is corresponding to the 
connection among the subsystems in the real world.  

To test the models of distributed real time systems, 
simulation methods are applied in our approach. For the 
purpose of simulation, environment model and 
sensor/actuator SimActivities are developed to simulate 
the real environment and sensor/actuator Activities. An 
Activity and its corresponding SimActivity share the 
same interfaces so the model using them can keep 
unchanged from simulation stage to execution stage. 
Different simulation methods can be applied to simulate 
and test the models incrementally. These simulation 
methods include centralized fast-mode and real-time 
simulation, distributed real-time simulation and 
hardware-in-the-loop (HIL) simulation. A more detailed 
description will be given in the next section. Note that 
each subcomponent can also be tested/simulated 
independently because DEVS has a well-defined concept 
of system modularity. 

After the models are validated by simulations, they 
are mapped to the real hardware for execution. Similar to 
a stand-alone system, each subsystem needs to conduct 
an “Activity Mapping” to associate the sensor/actuator 
Activities to the corresponding sensor/actuator hardware. 
In addition, as the models are actually executed on 
different network computers, a “Model Mapping” is 
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needed to map the models to their corresponding host 
computers. These computers are physically connected by 
the network and they execute the models that are 
logically coupled together by DEVS coupling. To govern 
this mapping, a prototype Model Mapping Specification 
has been developed, which will map the models to their 
network nodes, while maintaining the coupling among 
them. As such, model continuity for distributed real time 
systems means not only the control model of each 
subsystem remain unchanged but also the coupling 
among the component models is maintained from the 
simulation to distributed execution.  

In real execution, the control model of each 
subsystem makes decisions based on its control logic. It 
interacts with the real environment through 
sensor/actuator Activities. If a model sends out a 
message, based on the coupling,  this message will be 
sent across the network and put to another model’s input 
port. Again, with model continuity, all the subsystems 
will work and cooperate as were simulated. 
 

5. SIMULATION AND TESTING OF 
DISTRIBUTED REAL TIME SYSTEMS 

Distributed real time system is inheritly complex because 
the functions of the system are carried out by distributed 
computers over network. With our approach to model the 
whole system as a large coupled model, this model can be 
simulated and tested in our simulation framework. To 
enable simulation, environment model and 
sensor/actuator SimActivities are developed to simulate 
the real environment and sensor/actuator hardware. In 
this section, three different simulation methods are shown 
to give a step-wise simulation and testing of the models. 
These methods are central simulation, distributed 
simulation and hardware-in-the-loop simulation. To help 
to understand these methods, an example distributed real 
time system with two network nodes (two component 
models) is shown in Figure 4. 
 
The first step is central simulation. In central simulation, 
the two models and environment model are all in one 
computer. Fast-mode simulator and real-time simulator 
are chosen to simulate and test the model respectively. As 
fast model simulation verifies system’s logic behavior, 
real time simulation verifies system’s temporal behavior. 

As central simulation test models’ logic and temporal 
behavior in one computer, it doesn’t consider the network 
effect such as network delay. There are two ways to take 
account of this network factor. One way is to model the  
network and add the network model into central 
simulation. Another way is to run simulation over the real 
network. We adopt the second way to conduct distributed 
simulation of the system. In order to conduct a 

meaningful testing, the network the simulation is running 
should be the same or at least similar to the network the 
model will be really executed. As shown in figure 4, in 
distributed simulation, two models stay on two different 
computers. The environment model may stay on another 
computer or on the same computer as one of the models. 
The coupling between these computers remains the same, 
but it happens across the network. All of these models are 
simulated by real time simulators. These real time 

simulators take care of the underline network  
 
 
 

Figure 4: Simulation of Distributed Real Time 
System 

 
communication so it is transparent to the model. As such, 
there is not need to change the model for network 
communication. 

In distributed simulation, the real network is 
included so the system is simulated and tested over the 
real network. To further this test, real hardware the model 
will be executed can also be included into our simulation. 
This is the hardware-in-the-loop (HIL) simulation. In HIL 
simulation for distributed real time systems, one or more 
models can be distributed to their hardware to be 
simulated and tested. In the example of Figure 4, Model 1 
along with its real-time execution engine stays on the real 
hardware. Model 2, environment model and their real 
time simulators stay on other computers. These models 
still keep the same coupling. However, the model on real 
hardware may use some or all of its sensor/actuator 
hardware to interact with the real world. Similar to the 
description in section 3, different configuration can be 
applied to test different aspects of the model. 

After all these simulations, we have confidence that 
the distributed system will operate as we simulated. Then 
the models are mapped to the real hardware for 
execution. In real execution, DEVS real-time execution 
engine executes the model and take care of the underline 
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network communication. The environment model is gone, 
as all models interact with the real environment. 

 

6. EMPLOYING EXPERIMENTAL 
FRAMES FOR TESTING 

In previous sections, we have shown that simulation 
methods can be applied to test distributed or non-
distributed real time systems in an incremental fashion. . 
We have discussed a testing methodology that consists of 
an environment model and SimActivities in which 
control logic can be tested. Since such testing mainly 
focus on the interaction between the environment model 
and control model, a more general testing environment 
can be developed using the concept of experiment frame. 
An experimental frame is a specification of the conditions 
under which a system is observed or experimented with 
[3]. A typical experimental frame has three types of 
components: generator, which stimulates the system 
under investigation in a known, desired fashion; 
acceptor, which monitors an experiment to see that 
desired conditions are met; and transducer, which 
observes and analyzes the system outputs. In the context 
of real time software design and test, an experimental 
frame acts as a test module to serve the functions of a test 
event generator, test monitor and performance analyzer.  
The real environment in which the application is 
embedded is usually modeled and included in the 
experimental frame. A related example can be found in  
[8]. 

With the experimental frame concept, the example 
shown in Figure 4 to test a distributed system can be 
generalized as shown in Figure 5. Here, experimental 
frame replaces the environment model to provide a more 
general and powerful testing environment. The 
environment model is still needed inside the experimental 
frame to interact with control model. However, more 
special generators can also be added into the 
experimental frame to provide special case test. Notice 
that with experimental frames, not only can the control 
logic be tested and validated, but also the performance of 
the model, such as average response time, can also be 
measured by using a transducer. Moreover attributes of 
intelligent behavior can be captured through specialized 
experimental frames and tested in the various phases of 
development. 

 
 
 
 
 
 
 
 

 
 

 
 
 
Figure 5: Testing of Distributed Real Time 
System Using Experimental Frame 
 
In order to maintain model continuity, special 

attention has to be paid when introducing a test module to 
conduct testing. For example, in section 2 and 4, 
SimActivity has been introduced and we require that a 
SimActivity should have the same interfaces as an 
Activity. Similar restrictions are also needed when 
experimental frames are integrated into the system for 
model testing so that model continuity can be maintained. 

 

7. CONCLUSION 
Separation of models and simulators as distinct, 

though interacting, elements, supports model continuity.  
This means that the same model may be handled by 
different simulators appropriate to the design, testing, and 
execution phases of intelligent system design. Continuity 
of the control logic model is particularly important for 
design of  real time, distributed intelligent systems, 
whose complexity would otherwise overwhelm the 
designers.  Modeling and simulation environments, based 
on the DEVS formalism, can support such model 
continuity. An example in robotic system design has been 
developed and will be discussed in future papers. 
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